The Reliability Evaluation of Electromagnetic Valve of EMUs Based on Two-Parameter Exponential Distribution

نویسندگان

  • Jianwei Yang
  • Chunqing Zhao
  • Xi Li
  • Fumin Wang
چکیده

In order to solve reliability evaluation of life of electromagnetic valve of EMUs, this paper evaluates the life of electromagnetic valve under small sample size based on zero-failure data. Firstly, this paper selects the prior distribution of the failure probability, and then the posteriori distribution is obtained by using the Bayes method so that the Bayes estimation can be received under the square loss. Finally, according to the pi received, the reliability parameters of twoparameter exponential distribution are estimated based on weighted least square method. In addition, this paper applies the reliability theory to the reliability life evaluation of electromagnetic valve of EMUs which shows this method can solve the reliability assessment problem which provides certain theoretical basis for the reliability of electromagnetic valve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential-Based Approach for Estimating the Stress-Strength Reliability Parameter for Exponential Distribution

In this paper, two-stage and purely sequential estimation procedures are considered to construct fixed-width confidence intervals for the reliability parameter under the stress-strength model when the stress and strength are independent exponential random variables with different scale parameters. The exact distribution of the stopping rule under the purely sequential procedure is approximated ...

متن کامل

E-Bayesian Estimations of Reliability and Hazard Rate based on Generalized Inverted Exponential Distribution and Type II Censoring

Introduction      This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on th...

متن کامل

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

Pitman-Closeness of Preliminary Test and Some Classical Estimators Based on Records from Two-Parameter Exponential Distribution

In this paper, we study the performance of estimators of parametersof two-parameter exponential distribution based on upper records. The generalized likelihood ratio (GLR) test was used to generate preliminary test estimator (PTE) for both parameters. We have compared the proposed estimator with maximum likelihood (ML) and unbiased estimators (UE) under mean-squared error (MSE) and Pitman me...

متن کامل

Bayesin estimation and prediction whit multiply type-II censored sample of sequential order statistics from one-and-two-parameter exponential distribution

In this article introduce the sequential order statistics. Therefore based on multiply Type-II censored sample of sequential order statistics, Bayesian estimators are derived for the parameters of one- and two- parameter exponential distributions under the assumption that the prior distribution is given by an inverse gamma distribution and the Bayes estimator with respect to squared error loss ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015